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Deep immune profiling of COVID-19 patients reveals
distinct immunotypes with therapeutic implications
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Jennifer E. Wu*, Cécile Alanio* et al.

INTRODUCTION: Many patients with corona-
virus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection, present with severe respiratory
disease requiring hospitalization and mechanical
ventilation. Although most patients recover, dis-
ease is complex and case fatality can be as high
as 10%. How human immune responses con-
trol or exacerbate COVID-19 is currently poorly
understood, and defining the nature of immune
responses during acute COVID-19 could help
identify therapeutics and effective vaccines.

RATIONALE: Immune dysregulation during SARS-
CoV-2 infection has been implicated in patho-
genesis, but currently available data remain
limited. We used high-dimensional cytometry
to analyze COVID-19 patients and compare
them with recovered and healthy individuals
and performed integrated analysis of ~200 im-
mune features. These data were combined with
~50 clinical features to understand how the
immunology of SARS-CoV-2 infection may be
related to clinical patterns, disease severity, and
progression.
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RESULTS: Analysis of 125 hospitalized COVID-19
patients revealed that although CD4 and CD8
T cells were activated in some patients, T cell
responses were limited in others. In many pa-
tients, CD4 and CD8 T cell proliferation (mea-
sured by KI67 increase) and activation (detected
by CD38 and HLA-DR coexpression) were con-
sistent with antiviral responses observed in other
infections. Plasmablast (PB) responses were pres-
ent in many patients, reaching >30% of total B
cells, and most patients made SARS-CoV-2-
specific antibodies. However, ~20% of patients
had little T cell activation or PB response com-
pared with controls. In some patients, responses
declined over time, resembling typical kinetics
of antiviral responses; in others, however, robust
T cell and PB responses remained stable or in-
creased over time. These temporal patterns were
associated with specific clinical features. With an
unbiased uniform manifold approximation and
projection (UMAP) approach, we distilled ~200
immune parameters into two major immune
response components and a third pattern lacking
robust adaptive immune responses, thus reveal-
ing immunotypes of COVID-19: (i) Immunotype 1
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was associated with disease severity and showed
robust activated CD4 T cells, a paucity of circulating
follicular helper cells, activated CD8 “EMRASs,” hy-
peractivated or exhausted CD8 T cells, and PBs. (ii)
Immunotype 2 was characterized by less CD4 T cell
activation, Thbet" effector CD4 and CD8 T cells, and
proliferating memory B cells and was not associated
with disease severity. (i) Immunotype 3, which neg-
atively correlated with disease severity and lacked
obvious activated T and B cell responses, was also
identified. Mortality occurred for patients with all
three immunotypes, illustrating a complex relation-
ship between immune response and COVID-19.

CONCLUSION: Three immunotypes revealing dif-
ferent patterns of lymphocyte responses were
identified in hospitalized COVID-19 patients.
These three major patterns may each represent
a different suboptimal response associated with
hospitalization and disease. Our findings may
have implications for treatments focused on ac-
tivating versus inhibiting the immune response.
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Coronavirus disease 2019 (COVID-19) is currently a global pandemic, but human immune responses to
the virus remain poorly understood. We used high-dimensional cytometry to analyze 125 COVID-19
patients and compare them with recovered and healthy individuals. Integrated analysis of ~200 immune
and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients.

A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast
responses reaching >30% of circulating B cells. However, another subgroup had lymphocyte activation
comparable with that in uninfected individuals. Stable versus dynamic immunological signatures were
identified and linked to trajectories of disease severity change. Our analyses identified three
immunotypes associated with poor clinical trajectories versus improving health. These immunotypes
may have implications for the design of therapeutics and vaccines for COVID-19.

he coronavirus disease 2019 (COVID-19)

pandemic has, to date, caused >23 million

infections resulting in more than 800,000

deaths. After infection with severe acute

respiratory syndrome coronavirus 2
(SARS-CoV-2), COVID-19 patients can experi-
ence mild or even asymptomatic disease or
can present with severe disease requiring
hospitalization and mechanical ventilation.
The case fatality rate can be as high as ~10%
(I). Some severe COVID-19 patients display
acute respiratory distress syndrome (ARDS),
which reflects severe respiratory damage. In
acute respiratory viral infections, pathology
can be mediated by the virus directly, by an
overaggressive immune response, or both
(2-4). However, in severe COVID-19, the
characteristics and role of the immune re-
sponse, as well as how these responses relate
to clinical disease features, remain poorly
understood.

SARS-CoV-2 antigen-specific T cells have
been identified in the central memory (CM),
effector memory (EM), and CD45RA" effec-
tor memory (EMRA) compartments (5), but
the characteristics of these cells and their role
in infection or pathogenesis remain unclear.
Recovered individuals more often have evidence
of virus-specific CD4 T cell responses than virus-
specific CD8 T cell responses, though preexisting
CD4: T cell responses to other coronaviruses also
are found in a subset of people in the absence
of SARS-CoV-2 exposure (6). Inflammatory
responses—such as increases in interleukin-
6 (IL-6)-producing or granulocyte-macrophage
colony-stimulating factor (GM-CSF)-producing
CD4 T cells in the blood (7) or decreases in
immunoregulatory subsets such as regulatory
T cells (Tyeg) or vd T cells (8-11)—have been
reported. T cell exhaustion (72, 13) and in-
creased inhibitory receptor expression on
peripheral T cells have also been reported

(7, 14), though these inhibitory receptors are
also increased after T cell activation (I5). Al-
though there is evidence of T cell activation in
COVID-19 patients (16), some studies have found
decreases in polyfunctionality (12, 17) or cyto-
toxicity (12), but these changes have not been
observed in other studies (13). How this activa-
tion should be viewed in the context of COVID-
19 lymphopenia (18-20) remains unclear.

Most patients seroconvert within 7 to
14 days of infection, and increased plasma-
blasts (PBs) have been reported (16, 21-23).
However, the role of humoral responses in
the pathogenesis of COVID-19 is still unclear.
Whereas immunoglobulin G (IgG) levels re-
portedly drop slightly ~8 weeks after symptom
onset (24, 25), recovered patients maintain
high spike protein-specific IgG titers (6, 26).
IgA levels also can remain high and may cor-
relate with disease severity (25, 27). Further-
more, neutralizing antibodies can control
SARS-CoV-2 infection in vitro and in vivo
(4, 28, 29). Indeed, convalescent plasma that
contains neutralizing antibodies can improve
clinical symptoms (30). However, not all patients
that recover from COVID-19 have detectable
neutralizing antibodies (6, 26), which suggests
a complex relationship between humoral and
cellular response in COVID-19 pathogenesis.

Taken together, this previous work provokes
questions about the potential diversity of im-
mune responses to SARS-CoV-2 and the rela-
tionship of this diversity to clinical disease.
However, many studies describe small cohorts
or even single patients, thus limiting a com-
prehensive investigation of this diversity. The
relationship of different immune response
features to clinical parameters, as well as the
changes in immune responses and clinical
disease over time, remains poorly understood.
Because potential therapeutics for COVID-19
patients include approaches to inhibit, acti-
vate, or otherwise modulate immune function,
it is essential to define the immune response
characteristics related to disease features in
well-defined patient cohorts.

Acute SARS-CoV-2 infection in humans
results in broad changes in circulating
immune cell populations

We conducted an observational study of
hospitalized patients with COVID-19 at the
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Fig. 1. Clinical characterization of patient cohorts, inflammatory markers,
and quantification of major immune subsets. (A) Overview of patient cohorts
in our study, including HDs, RDs, and COVID-19 patients. (B) Quantification of
key clinical parameters in COVID-19 patients. Each dot represents a COVID-19
patient; HD ranges are indicated in green. THO, x1000. (C) Spearman correlation
and hierarchical clustering of indicated features for COVID-19 patients.

(D) Representative flow cytometry plots and (E) frequencies of major immune
subsets. (F) Ratio of CD4 to CD8 T cells. (G) Spearman correlation of CD4:CD8
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hsCRP (ma/mL)

ratio and clinical lymphocyte count per patient. Dark and light gray shaded
regions represent the clinical normal range and normal range based on study
HDs, respectively. The vertical dashed line indicates the clinical threshold for
lymphopenia. (H) Spearman correlations of indicated subsets with various
clinical features. (E and F) Each dot represents an individual HDs (green),
RDs (blue), or COVID-19 patient (red). Significance was determined by
unpaired Wilcoxon test with Benjamini-Hochberg (BH) correction: *P < 0.05,
**P < 0.01, **P < 0.001, and ****P < 0.0001.
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University of Pennsylvania (UPenn IRB 808542)
that included 149 adults with confirmed SARS-
CoV-2 infection (i.e, COVID-19 patients) (Fig.
1A). Blood was collected at enrollment (typically
~24 to 72 hours after admission). Additional
samples were obtained from patients who
remained hospitalized on day 7 (D7). Blood
was also collected from nonhospitalized
patients who had recovered from documented
SARS-CoV-2 infection [recovered donors (RDs);
n = 46], as well as from healthy donors (HDs;
n =70) (UPenn IRB 834263) (Fig. 1A). Clinical
metadata are available from the COVID-19
patients over the course of disease (table S1).
Flow cytometry data from peripheral blood
mononuclear cells (PBMCs), as well as clinical
metadata, were collected from a subset of pa-
tients and donors: COVID-19 patients (n =
125), RDs (n = 36), and HDs (n = 60) (Fig. 1A
and tables S2 to S4).

COVID-19 patients had a median age of 60
and were significantly older than HDs and
RDs (median ages of 41 and 29, respectively),
though the age distributions for all three
cohorts overlapped (Fig. 1A and fig. S1A). For
COVID-19 patients, median body mass index
was 29 (range: 16 to 78), and 68% of these
patients were African American (table S2).
Comorbidities in COVID-19 patients were domi-
nated by cardiovascular risk factors (83% of
the cohort). Nearly 20% of patients suffered
from chronic kidney disease, and 18% had a
previous thromboembolic event. A subset of
patients (18%) were immunosuppressed,
and 7 and 6% of patients were known to have
a diagnosis of cancer or a preexisting pulmo-
nary condition, respectively. Forty-five percent
of the patients were treated with hydroxy-
chloroquine (HCQ), 31% with steroids, and
29% with remdesivir. Eighteen individuals died
during their hospital stay or within 30 days of
admission. The majority of the patients were
symptomatic at diagnosis and were enrolled
~9 days after initiation of symptoms. Approx-
imately 30% of patients required mechani-
cal ventilation at presentation, with additional
extracorporeal membrane oxygenation in
four cases.

As has been reported for other COVID-19
patients (31), this COVID-19 cohort presented
with a clinical inflammatory syndrome. C-reactive
protein (CRP) was elevated in more than 90%
of individuals and lactate dehydrogenase and
D-dimer were increased in the majority, whereas
ferritin was above normal in ~75% of COVID-
19 patients (Fig. 1B and fig. S1B). Similarly,
troponin and NT-proBNP were increased in
some patients (fig. S1B). IL-6 levels, measured
in a subset of patients, were normal in 5 patients,
moderately elevated in 5 patients (6 to 20 pg/ml),
and high in 31 patients (21 to 738 pg/ml) (fig.
S1B). Although white blood cell (WBC) counts
were mostly normal, individual leukocyte pop-
ulations were altered in COVID-19 patients (Fig.

Mathew et al., Science 369, eabc8511 (2020)

1B). A subset of patients had high polymorpho-
nuclear leukocyte (PMN) counts (fig. S1B), as
described previously (8, 32) and in a companion
study (33). Furthermore, approximately half of
the COVID-19 patients were clinically lymphopenic
(absolute lymphocyte count <1000/ul; Fig. 1B).
By contrast, monocyte, eosinophil, and basophil
counts were mostly normal (Fig. 1B and fig. S1B).

To examine potential associations between
these clinical features, we performed corre-
lation analysis (Fig. 1C and fig. S1C). This
analysis revealed correlations between differ-
ent COVID-19 severity metrics, as well as clinical
features or interventions associated with more-
severe disease (e.g., D-dimer, vasoactive med-
ication) (Fig. 1C and fig. S1C). WBCs and PMNs
also correlated with metrics of disease severity
(e.g., APACHE III) as well as with IL-6 levels
(Fig. 1C and fig. S1C). Other relationships were
also apparent, including correlations between
age or mortality and metrics of disease severity
and many other correlations between clinical
measures of disease, inflammation, and comor-
bidities (Fig. 1C and fig. S1C). Thus, COVID-19
patients presented with varied preexisting
comorbidities, complex clinical phenotypes,
evidence of inflammation in many patients,
and clinically altered leukocyte counts.

To begin to investigate immune responses
to acute SARS-CoV-2 infection, we compared
PBMCs of COVID-19 patients, RDs, and HDs
by using high-dimensional flow cytometry. We
first focused on the major lymphocyte pop-
ulations. B cell and CD3 T cell frequencies
were decreased in COVID-19 patients com-
pared with HDs or RDs, reflecting clinical
lymphopenia, whereas the relative frequency
of non-B and non-T cells was correspondingly
elevated (Fig. 1, D and E). Although a numerical
expansion of a non-B, non-T cell type is pos-
sible, loss of lymphocytes likely results in an
increase in the relative frequency of this popu-
lation. This non-B, non-T cell population is also
probed in more detail in the companion study
(33). Examining only CD3 T cells revealed
preferential loss of CD8 T cells compared with
CD4 T cells (Fig. 1, F and G, and fig. S1D); this
pattern was reflected in absolute numbers
estimated from the clinical data, where both
CD4 and CD8 T cell counts in COVID-19 pa-
tients were lower than the clinical reference
range, though the effect was more prominent
for CD8 T cells (49 of 61 individuals with
below-normal levels) than for CD4 T cells (38
of 61 individuals with below-normal levels)
(fig. S1E). These findings are consistent with
previous reports of lymphopenia during COVID-
19 (I7-20) but highlight a preferential impact
on CD8 T cells.

We next asked whether the changes in these
lymphocyte populations were related to clin-
ical metrics (Fig. 1H). Lower WBC counts were
associated preferentially with lower frequen-
cies of CD4 and CD8 T cells and increased

4 September 2020

non-T, non-B cells, but not with B cells (Fig.
1H). These lower T cell counts were associated
with clinical markers of inflammation, includ-
ing ferritin, D-dimer, and high-sensitivity CRP
(hsCRP) (Fig. 1H), whereas altered B cell fre-
quencies were not. Thus, hospitalized COVID-
19 patients present with a complex constellation
of clinical features that may be associated with
altered lymphocyte populations.

SARS-CoV-2 infection is associated with CD8
T cell activation in a subset of patients

We next applied high-dimensional flow cyto-
metric analysis to further investigate lymphocyte
activation and differentiation during COVID-19.
We first used principal components analysis
(PCA) to examine the general distribution of
immune profiles from COVID-19 patients (n =
118), RDs (n = 60), and HDs (n = 36) using
193 immune parameters identified by high-
dimensional flow cytometry (tables S5 and S6).
COVID-19 patients were clearly separated from
RDs and HDs in PCA space, whereas RDs and
HDs largely overlapped (Fig. 2A). We inves-
tigated the immune features that drive this
COVID-19 immune signature. Given the role
of CD8 T cells in response to viral infection,
we focused on this cell type. Six major CD8
T cell populations were examined by using
the combination of CD45RA, CD27, CCR7, and
CD95 cell surface markers to define naive
(CD45RA*CD27"CCR7"'CD95 "), central memory
[CD45RA"CD27"CCR7" (CM)], effector memory
[CD45RA™CD27'CCR7 (EM1), CD45RA CD27°
CCR7" (EM2), CD45RA"CD27 CCR7 (EMS3)],
and EMRA (CD45RA"CD27 CCR7") (Fig. 2B)
CDS8 T cells. Among the CD8 T cell populations,
there was an increase in the EM2 and EMRA
populations and a decrease in EM1 (Fig. 2C).
Furthermore, the frequency of CD39™ cells was
increased in COVID-19 patients compared with
HDs (Fig. 2D). Although the frequency of PD-1"
cells was not different in the total CD8 popu-
lation (Fig. 2D), it was increased for both
CM and EMI1 (fig. S2A). Finally, all major CD8
T cell naive and memory populations in RDs
were comparable to those in HDs (Fig. 2, C
and D, and fig. S2A).

Most acute viral infections induce prolifer-
ation and activation of CD8 T cells detectable
by increases in KI67 or coexpression of CD38
and HLA-DR (34, 35). There was a significant
increase in KI67" and also HLA-DR*CD38™"
non-naive CD8 T cells in COVID-19 patients
relative to HDs or RDs (Fig. 2, E and F). In
COVID-19 patients compared with HDs and
RDs, K167 CDS8 T cells were increased across
all subsets of non-naive CD8 T cells, including
CM and EM1 populations (fig. S2B). These data
indicate broad T cell activation, potentially
driven by bystander activation and/or homeo-
static proliferation in addition to antigen-driven
activation of virus-specific CD8 T cells. This
activation phenotype was confirmed by HLA-DR
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HDs, RDs, and COVID-19 patients concatenated and overlaid. (Bottom) viSNE
projections of expression of the indicated proteins. (H) viSNE projection of non-naive
CD8 T cell clusters identified by FlowSOM clustering. (I) Mean fluorescence intensity
(MFI) as indicated (column-scaled z-scores). (J) Percentage of non-naive CD8 T cells
from each cohort in each FlowSOM cluster. Boxes represent interquartile ranges
(IQRs). (C, D, E, F, and J) Each dot represents an individual HDs (green), RDs (blue),

Fig. 2. CD8 T cell subset skewing and activation patterns in COVID-19 patients
and potential links to T cell-driven cytokines. (A) PCA of aggregated flow
cytometry data. (B) Representative flow cytometry plots of the gating strategy
for CD8 T cell subsets. (C) Frequencies of CD8 T cell subsets as indicated.
(D) Frequencies of PD-1* and CD39" cells. Frequencies of (E) KI67* and

(F) HLA-DR*CD38" cells and representative flow cytometry plots. The green line

in the left panels denotes the upper decile of HDs. (G) (Top) Global ViSNE projection
of non-naive CD8 T cells for all participants pooled, with non-naive CD8 T cells from
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or COVID-19 patient (red). Significance was determined by unpaired Wilcoxon test
with BH correction: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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and CD38 coexpression that was signifi-
cantly increased for all non-naive CD8 T cell
subsets (Fig. 2F and fig. S2C). However, the
magnitude of the KI67" or CD38 "HLA-DR*
CDS8 T cells varied widely in this cohort. The
frequency of KI67° CD8 T cells correlated
with the frequency of CD38"HLA-DR* CDS8
T cells (fig. S2D). However, the frequency of
CD38"HLA-DR" T cells, but not KI67" CD8
T cells, was elevated in COVID-19 patients who
had concomitant infection with another mi-
crobe but was not affected by preexisting immu-
nosuppression or treatment with steroids (fig.
S2E). Moreover, these changes in CD8 T cell
subsets in COVID-19 patients did not show
clear correlations with individual metrics of
clinical disease such as hsCRP or D-dimer (fig.
S2E), although the frequency of KI67" CD8
T cells was associated with elevated IL-6 and
ferritin levels. Although CD8 T cell activation
was common, ~20% of patients had no increase
in KI67" or CD38 "HLA-DR" CDS8 T cells above
the level found in HDs (Fig. 2, E and F). Thus,
although robust CD8 T cell activation was a
clear characteristic of many hospitalized COVID-
19 patients, a substantial fraction of patients
had little evidence of CD8 T cell activation in
the blood compared with controls.

To gain more insights, we applied global
high-dimensional mapping of the 27-parameter
flow cytometry data. A t-distributed stochastic
neighbor embedding (tSNE) representation of
the data highlighted key regions of non-naive
CD8 T cells found preferentially in COVID-19
patients (Fig. 2G). A major region of this tSNE
map present in COVID-19 patients, but not
HDs or RDs, encompasses CD8 T cells enriched
for expression of CD38, HLA-DR, K167, CD39,
and PD-1 (Fig. 2G), highlighting the coexpres-
sion of these activation markers with other
features, including CD95 (i.e., FAS). Notably,
although non-naive CD8 T cells from RDs
were highly similar to those from HDs, subtle
differences existed, including in the lower re-
gion highlighted by T-bet and CX3CR1 (Fig. 2G).
To further define and quantify these differences
between COVID-19 patients and controls, we
performed FlowSOM clustering (Fig. 2H) and
compared expression of 14 CD8 T cell markers
to identify each cluster (Fig. 2I). This approach
identified an increase in cells in several clus-
ters, including clusters 1, 2, and 5 in COVID-19
patients, reflecting CD45RA*CD27 CCR7~
EMRA-like populations that expressed CX3CR1
and varying levels of T-bet (Fig. 2, I and J)
(“EMRA” denotes a subset of effector mem-
ory T cells reexpressing CD45RA). Clusters 12
and 14 contained CD27 'HLA-DR*CD38"KI67"
PD-1" activated, proliferating cells and were
more prevalent in COVID-19 patients (Fig. 2, I
and J, and fig. S2F). By contrast, the central
Eomes'CD45RA"CD27'CCR7  EMI-like clus-
ter 6 and T-bet™CX3CRI1" cluster 11 were de-
creased in COVID-19 patients compared with
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HDs (Fig. 2, Iand J, and fig. S2F). Thus, CD8
T cell responses in COVID-19 patients were
characterized by populations of activated,
proliferating CD8 T cells in a subgroup of
patients.

SARS-CoV-2 infection is associated with
heterogeneous CD4 T cell responses and
activation of CD4 T cell subsets

We next examined six well-defined CD4 T cell
subsets as above for the CD8 T cells, includ-
ing naive; EMI, -2, and -3; CM; and EMRA
(Fig. 3A). Given the potential role of antibodies
in the response to SARS-CoV-2 (27, 29), we
also analyzed circulating T follicular helper
(Tgp) cells [CD45RAPD-1"CXCR5" (cTrp) (36)]
and activated circulating Tgy cells [CD38™
ICOS* (activated cTyp)], the latter of which
may be more reflective of recent antigen en-
counter and emigration from the germinal
center (37, 38) (Fig. 3A). These analyses re-
vealed a relative loss of naive CD4 T cells com-
pared with controls, but increased EM2 and
EMRA (Fig. 3B). The frequency of activated but
not total cTppy cells was statistically increased
in COVID-19 patients compared with HDs,
though this effect appeared to be driven by a
subgroup of patients (Fig. 3B). Notably, acti-
vated cTgy frequencies were also higher in
RDs than in HDs (Fig. 3B), perhaps reflect-
ing residual COVID-19 responses in that group.
Frequencies of KI67" or CD38 "HLA-DR" non-
naive CD4 T cells were increased in COVID-19
patients (Fig. 3, C and E); however, this change
was not equivalent across all CD4 T cell sub-
sets. The most substantial increases in both
KI67" and CD38 "HLA-DR" cells were found in
the effector memory populations (EM1, EM2,
EM3) and in cTyy cells (fig. S3, A and B).
Although some individuals had increased ac-
tivation of EMRA, this response was less pro-
nounced. By contrast, PD-1 expression was
increased in all other non-naive populations
compared with HDs or RDs (fig. S3C). Co-
expression of CD38 and HLA-DR by non-naive
CD4 T cells correlated with the frequency of
KI67" non-naive CD4 T cells (fig. S3D). More-
over, the frequency of total non-naive CD4
T cells that were CD38"HLA-DR™ correlated
with the frequency of activated cTgy cells
(fig. S3E). In general, the activation of CD4
T cells was correlated with the activation
of CD8 T cells (Fig. 3, D and F). However,
whereas about two-thirds of COVID-19 pa-
tients had KI67" non-naive CD4 or CDS T cell
frequencies above controls, about one-third
had no increase in frequency of KI67" CD4
or CD8 T cells above that observed in HDs
(Fig. 3, D and F). Moreover, although most
patients had similar proportions of activated
CD4 and CD8 T cells, a subgroup of patients
had disproportionate activation of CD4 T cells
relative to CD8 T cells (Fig. 3, D and F). KI67"
and CD38"HLA-DR" non-naive CD4 T cell
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frequencies correlated with ferritin and with
APACHE III score (fig. S3F), suggesting a
relationship between CD4 T cell activation
and disease severity. Immunosuppression did
not affect CD4 T cell activation; however,
early steroid administration was weakly as-
sociated with CD4 T cell KI67 expression
(fig. S3F). Together, these data indicate that
T cell activation in COVID-19 patients is sim-
ilar to what has been observed in other acute
infections or vaccinations (37, 39, 40) and
identify patients with high, low, or essen-
tially no T cell response on the basis of KI67"
or CD38"HLA-DR" expression compared with
control individuals.

Projecting the global CD4 T cell differenti-
ation patterns into the high-dimensional tSNE
space again identified major alterations in the
CD4 T cell response in COVID-19 patients com-
pared with HDs and RDs (Fig. 3G). In COVID-
19 infection, there was a notable increase in
density in tSNE regions that mapped to ex-
pression of CD38, HLA-DR, PD1, CD39, K167,
and CD95 (Fig. 3G), similar to CD8 T cells. To
gain more insight into these CD4 T cell changes,
we again used a FlowSOM clustering approach
(Fig. 3, H and I). This analysis identified an
increase in clusters 13 and 14: (representing
populations that express HLA-DR, CD38, PD1,
K167 and CD95) as well as cluster 15 (contain-
ing Thet"CX3CR1" effector-like CD4 T cells) in
COVID-19 patients compared with HDs and
RDs (Fig. 3, I and J, and fig. S3G). By contrast,
this clustering approach identified reduction
in CXCR5" cTyplike cells (clusters 2 and 3) in
COVID-19 participants compared with HDs
(Fig. 3, I and H). Collectively, the results of this
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